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Abstract 
In this paper, the problem of stabilizing a given but arbitrary linear time invariant continuous time system with 

the transfer functions ( )
( )

( )

� s
P s

D s
=

, by a first order feedback controller 
1 2

3

x s x
C

s x

+
=

+

 was taken. The 

complete set of stabilizing controllers is determined in the controller parameter space
1 2 3[ , , ]x x x . This 

includes an answer to the existence question of whether P(s) is “first order stabilizable” or not. The set is 

shown to be computable explicitly, for fixed 3x .The results to stabilize lower order plants is extended to 

determine the subset of controllers which also satisfy various robustness and performance specifications. The 

problem is solved by converting the H∞ problem into the simultaneous stabilization of the closed loop 

characteristic polynomial. The stability boundary of each of these polynomials can be computed explicitly for 

fixed x3 by solving linear equations. The union of the resulting stability regions yields the set of all set of all X1 

and X2.The entire three dimensional set is obtained by sweeping X3 over the stabilizing range.  They 

demonstrate that the shape of the stabilizing set in the controller parameter space is quite different and much 

more complicated compared to that of the PID controllers.  
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I!TRODUCTIO! 
It is well known that the majority of controllers in 

industry are of the proportional-integral-derivative 

(PID) type and lead/lag controllers of the 

form
1 2

3

x s x
C

s x

+
=

+
 .Over the last 40 years control 

theory literature has been dominated by modern 

optimal control theory and its offshoots. These 

powerful techniques are based on the Youla–Jabr–

Bongiorno–Kucera (YJBK) characterization of all 

stabilizing controllers for a given plant. However, the 

resulting controllers tend to be of unnecessarily high 

order. In fact, there are only a few results that apply 

to low order/fixed structure controllers. In attempting 

to combine the power of optimal control with low 

order/ fixed structure controllers one might try to 

obtain an analog to the YJBK parameterization. 

Recently, this problem has been solved for PID 

controllers. With the stability set parameterized, it is 

natural to search for a particular controller within this 

set based on performance and/or robustness criteria. 

Many such criteria can be formulated in terms of the 

frequency weighted H
∞
 norm of a closed-loop 

transfer function. Using the results, it has been shown 

that it is possible to obtain an H∞ optimal design 

using a brute force optimal search procedure for PID 

controllers (Ching-Ming Lee, 2004). The stability 

region over which the search is conducted is 

composed of the intersection of convex polygons. 

This leads to a region bounded by linear constraints. 

This advantage is not available in the case of first 

order controllers. Nevertheless, we show here that by 

solving sets of linear equations it is possible to obtain 

the complete set of stabilizing, first-order controllers 

which simultaneously satisfies an H
∞
 constraint. 

 

Design Preliminaries 

Consider the Single Input Single Output (SISO) 

feedback system with the first order controller. Here 

we are not going for any dead time compensator for 

the time delayed system. The objective is to find the 

admissible set of X1, X2 and X3 by using the 

polynomial stabilization method and to find the 

stabilizing regions. 
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Figure 1. Feedback control system with 

multiplicative  uncertainty 

 

OBJECTIVES 

Phase 1 – Design of Various Conventional Controller 

for the integral process with dead time 

Phase 2 – (i) Stability and Performance analysis of 

the unstable systems with Mu synthesis  

(ii) Design of H-Infinity Controller design. 

(iii) H-Infinity PID Controller Design for the robust 

performance (Masami Saeki.2005 & Guillermo J. 

Silva. 2004) 

Phase 3 – To implement the Lower Order Controller 

to the Real Time Inverted Pendulum            

                  

MATERIALS A!D METHODS 

Design Approach 

The controller design part for the unstable process 

has been divided into two categories.  

1. First order controller for the Integrating 

Process with Dead Time.  

2. Design of Controller for the Real Time 

Inverted Pendulum 

As a preliminary work for the controller design of 

real time Rotary Inverted Pendulum (RIP), we have 

considered the model of the RIP. The LQR controller 

has been calculated and implemented in LabVIEW. 

The obtained responses were quite satisfactory for the 

RIP model. In order to design and implement the 

Lower order robust controller /Robust PID controller 

for the Inverted Pendulum we need to extract the 

encoder output of the arm and pendulum to the 

external board. The encoder output will give the 

exact angle of the pendulum. So that we can able to 

calculate the error “e” by finding the difference 

between the 180  ◌۫  and the actual angle of the 

pendulum, which can be used as the feedback for the 

controller. Since this process is under going, the real 

time validation of Robust PID controller will be 

planned in the near future (Weidong Zhang, 2002).  

 

!eed for Robust First Order Controller 

In this paper, the design of lower order robust 

controller based on an H
∞
 performance index using 

polynomial stabilization has been considered. In H
∞
 

controller design, the major disadvantage of the 

existing methods is that they lead to high-order 

controllers. This is the gap between theory and 

practice. Therefore the requirement is to design a low 

order controller with similar performance to the H∞ 

optimal controllers, which can find sufficiently wide 

use in engineering practice. We first design the H
∞
 

optimal controller using Glover and Doyle’s results, 

and obtain the corresponding performance index. 

Second, the desired low order controller with several 

parameters is chosen, e.g., a first-order controller, or 

a PID controller. Finally, we use the real-code genetic 

algorithm to find the optimal controller parameters 

that preserve the performance index δ. These lower 

order controllers finds more practical applications in 

the area of aircraft and space vehicle stabilizations 

and overcomes the disadvantages of the H∞ 

controller.  

 

Discussion on H-Infinity based Lower Order 

Controller 

The low order controller has many advantages such 

as simple hardware implementation and high 

reliability and is very important for the successful 

integration of controllers with smart structures. 

Designing a controller with robustness to different 

uncertainties in smart structure always leads to a high 

order controller. Alternate method of controller 

reduction, is to find a low order controller by 

reducing the full order controller. The effect of the 

controller reduction on the system performance is 

taken into account by selecting a maximum allowable 

controller reduction error for preserving the 

performance. The full order controller can be 

synthesized to provide optimal performance or 

maximum allowable controller reduction error. 

Linear matrix inequalities (LMIs) are utilized in those 

methods to design the low order controllers. The 

variations of structural parameters, natural 

frequencies and damping ratios are considered in the 

controller design as parametric uncertainties. 

 

Design Problem  
Consider an arbitrary LTI plant (after PADE appx)  

and a first order controller given by  

 

Plant:      2

( ) ( 0 .0 5 0 6 ) 0 .0 1 6 3
( )

( ) 0 .3 8 8

� s s
P s

D s s s

− +
= =

+
  

Controller:          1 2

3

( )
x s x

C s
s x

+
=

+
  

We naturally assume that 'the plant P(s) _is 

stabilizable, by a controller of some order, not 

necessarily first order. Let us use the standard even-

odd decomposition of polynomials: 

 
2 2

2 2

2

( ) ( ) ( ) (1 )

( ) ( 0 .0 5 0 6 ) 0 .0 1 6 3

( ) ( ) ( ) ( 2 )

( ) 0 .3 8 8

e o

e o

� s � s s � s

� s s

D s D s s D s

D s s s

= + − − − − →

= − +

= + − − − − →

= +
  

Step Input 

C(s) P(s) 
      

r 

y 

- 
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The characteristic polynomial of the closed loop 

system is  

 

3 1 2( ) ( ) ( ) ( ) ( )s D s s x � s x s xδ = + + +  

           
2 2 2

3 1 2[ ( ) ( )]( ) [ ( ) ( )]( )e o e oD s sD s s x � s s� s x s x= + + + + +

 
2 2 2 2 2 2 2

3 2 1 3 1 2

3

1

2 2 2 2

3 2 1 3 2 1

3 2

3

( ) [ ( ) ( ) ( ) ( )] [ ( ) ( ) ( )

( )]

( ) 0.388 0.0163 ( 0.0506) [ 0.388 ( 0.0506) 0.0163 ]

( ) (0.388 0.

o e e o e o o

e

s s D s x D s x � s x s � s s D s x D x x � s

x � s

s s s x x s x s s x x x

s s s x

δ = ⋅ + ⋅ + ⋅ + ⋅ ⋅ + + ⋅ + ⋅

            + ⋅

δ = + ⋅ + ⋅ + − + + + − +

δ = +  + − 1 1 2 3 20506 ) (0.0163 0.0506 0.388 ) 0.0163x s x x x x⋅ +  ⋅ − ⋅ + ⋅ + ⋅

With s=jω

 

 

The complex root boundary is given by 

 
( ) 0 , ( 0 , ) ( 3 )jδ ω ω=        ∈ + ∞ − − − − − − →

 

And the real root boundary is given by  

 

1( 0 ) 0 , 0 ( 4 )nδ δ +=           = − − − − − − − − − →

Where 1nδ +  denotes the leading co-efficient of 

( )sδ . 
 

 

Thus, the complex root boundary is given by: 

 
2 2 2 2 2 2

1 2 3

2 2 2

1 2 3

( ) ( ) ( ) ( )] 0 (5)

( 0.0506) ( 0.0163) ( ) [( ) 0.388] 0

o e e o� x � x D x D

x x x

ω ω ω ω ω ω

ω ω ω

− − + − + − − − = − − − − →

− ⋅ − ⋅ + − ⋅ + − ⋅ − ⋅ =

2 2 2 2 2

1 2 3

2

1 2 3

[ ( ) ( ) ( ) ( )] 0 (6)

[(0.0163) ( 0.0506) (0.388) ( )] 0

e o o e
� x � x D x D

x x x

ω ω ω ω ω

ω ω

  − ⋅ + − ⋅ + − ⋅ + − = −−−−→

  ⋅ + − ⋅ + ⋅ + − =

Note that at ω=0 equation 6 is trivially satisfied and 

equation 5 becomes  

 

2 3

2 3

(0) (0 ) 0 (7 )

0 .0163 (0 ) 0

e e� x D x

x x

⋅ + ⋅ = − − − − − − − − − − − − − − →

⋅ + ⋅ =

Which coincides with the condition  

 
( 0 ) 0δ =  

The condition 
1nδ + =0 translates to  

1 0 (8)n nd x n+ ⋅ = − − − − − − − − − − − − − − →
. 

Where ,n nd n  denotes the co-efficient of sn in D(s) 

and N(s) respectively. 

For ω>0 we have 
2 2 2 2 2 2

1 2 3

2 2 2

1 2 3

( ) ( ) ( ) ( )] 0 (9)

( 0.0506) ( 0.0163) ( ) [( ) 0.388] 0

o e e o� x � x D x D

x x x

ω ω ω ω ω ω

ω ω ω

− − + − + − − − = −−− →

− ⋅ − ⋅ + − ⋅ + − ⋅ − ⋅ =

2 2 2 2 2

1 2 3

2

1 2 3

[ ( ) ( ) ( ) ( )] 0 (10)

[(0.0163) ( 0.0506) (0.388) ( )] 0

e o o e� x � x D x D

x x x

ω ω ω ω ω

ω ω

− ⋅ + − ⋅ + − ⋅ + − = −−−−−→

  ⋅ + − ⋅ + ⋅ + − =

 

Re-write the above in matrix form:  

2 2 2
1

2 2
2

2
1

2

2 2 2

3

2 2

3

( ) ( )

( ) ( )

( 0 .0 5 0 6 ) 0 .0 1 6 3

0 .0 1 6 3
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x

x

D x D
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ω ω         ω

ω                 ω

ω

ω         ω ω
ω           ω

 ⋅ − − −  
   − −   

 ⋅ −      −  
                    − 0 .0 5 0 6   

− ⋅ − −
=
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2 2

3

2

3

(1 1)

( ) ( 0 .3 8 8 )

0 .3 8 8 ( )

x

x

ω          ω
            ω

 
− − − − − − − − − − − − → 

 

 − ⋅ −
=  − ⋅ − − 

 

Now consider the case when ( ) 0A ω ≠ for all 

0ω > . 

The case when ( ) 0A ω =  will be discussed later.  

Then 

 

2 2 2 2 2

2 2 2

( ) ( ) ( ) 0

( ) ( 0 . 0 5 0 6 ) ( 0 . 0 1 6 3 )

o eA � �

A

ω ω ω ω

ω ω

= − + − >

= − +

,    

  0ω∀ >  

Therefore, for every 3x the above equation in matrix 

form has a unique solution 1x  and 2x at each ω>0 

given by:  
2 2

1

2 2 2
2

( ) ( )1

( ) ( ) ( )

o e

e o

x � �

x A � �

ω ω
ω ω ω ω

 − − 
= =    − − −   

.

2 2 2

3

2 2

3
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( ) ( )

e o
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D x D
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ω ω ω
ω ω

 − − −
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In other words 
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               + 2 2

3

2 2

1 2

2 2 2

3
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( )2 2 2 2 2 2 2 2 2

1 3

2 2

3
1 2

1
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For a fixed value of
3x , let ω run from 0 to ∞. The above 

equations trace out a curve in the     
1x  - 

2x
 
plane 

corresponding to the complex root boundary. These 

curves along with the straight lines equation (7) and 

equation (8) partition the parameter space into a set of 

open root distribution invariant regions.  

If the possibility ( ) 0A ω =
 

is considered for 

some 0ω ≠ . The assumption of stabilisability of the 

plant rules out this possibility.                     

 

 Let   
2 2 2 2 2

( ) ( ) ( ) 0 , (1 3)o eA � �ω ω ω ω= + − = − − − →
 

 

For some 0ω ≠ . Since 
2 2 2 2
( ), ( ) 0 ,o e� �ω ω ≥ equation (13) holds if and 

only if  

 
2 2 2 2
( ) ( ) 0 . (1 4 )o e� �ω ω= − = − − − − − − − →

 
 

From equation (11) it follows that 

 

 

2 2 2

3

2 2

3

2 2 2 2

2 2

( ) ( ) 0 ,

( ) ( ) 0 ,

( ) ( ) 0 (1 5 )

s in ( ) , ( ) 0 ,

e o

o e

o e

o e

D x D

D x D

th e r e fo r e

D D

c e D D

ω ω ω

ω ω

ω ω ω

ω ω
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− + − = − − − − − →
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Equation (15) holds good if and only if  
2 2( ) ( ) 0 (1 6 )o eD Dω ω= − = − − − − − − →  

From equation (14) and (16), it follows that equation 

(13) has a solution for ω 0 if and only if D(s) and 

N(s) have a common factor . Therefore, the 

case =0 for some ω need not be considered. 

 

RESULTS A!D DISCUSSIO!S  
After the peer analysis and mathematical process, the 

stabilizing layers of X1, X2 and X3 has been plotted 

and the stability test through Routh Hurwitz criteria 

was also carried out for the particular values.  

 

 

 

 

Table-1. Set of X1, X2 and X3 values which stabilizes the δ 

 

S.No X1 X2 X3 

1. 7.5 11 2.4 

2. 7.5 29 2.4 

3. 7.5 27 2.4 

4. 7.5 25 2.4 

5. 7.5 22 2.4 

6. 7.5 20 2.4 

7. 7.5 19 2.4 

8. 7.5 17 2.4 

9. 7.5 16 2.4 

10. 7.5 15 2.4 

11. 7.5 10 2.4 

 

            

        Table.2. Checked set of   X1, X2 and X3 

X1 X2 X3 

7.5 11 2.4 

 

        Table.3. Routh Table for  δ 

Routh Hurwitz 1
st
 column is 

3s  
1 

2s  
2.40850 

1s  

0.4224053249 

0s  
0.1793 
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          Figure 2. Admissible set of X1, X2 and X3 

values for First order Controller 
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         Figure 3. Step response for the X1, X2 and X3 

values as in table 
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       Figure 4.Step response for the appx and time 

delayed plant.  
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       Figure 6. Nyquist plot of closed loop system(PC)  

 
             Figure 7. Implementation of LQR controller 

for the RIP model in LabVIEW 

 

            Figure 8. Simulation results of RIP with the 

all four states α, α ,θ, θ in LabVIEW 
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FUTURE WORKS 

1) To retune the controller for the RIP-MIMO 

transfer function.  

2) To validate the real time response with the 

various controller tuning.  

 

CO!CLUSIO!S 
The results of first order robust controller for the time 

delayed system has been reported in this paper. 

Layers of stabilizing values of X1 and X2 for the 

various fixed values of X3 has been plotted as shown 

in Fig.1 and the stability of the controller with respect 

to plant were also analyzed as showed in Fig.5 and 

Fig.6.  As a part of real time validation using Rotary 

Inverted Pendulum (RIP), the LQR controller has 

been designed and simulated for the model of the 

RIP, also it results in the satisfactory simulation 

results as shown in the Fig.7. and Fig.8.  
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