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Abstract

In this paper, the problem of stabilizing a given but arbitrary linear time invariant continuous time system with

the transfer functionsP N (s) » by a first order feedback controller C oo XSt ox, was taken. The
s) = = st X,

D (s) s+ x,
complete set of stabilizing controllers is determined in the controller parameter space[X,,X,,Xx;]. This
includes an answer to the existence question of whether P(s) is “first order stabilizable” or not. The set is
shown to be computable explicitly, for fixed X,.The results to stabilize lower order plants is extended to

determine the subset of controllers which also satisfy various robustness and performance specifications. The
problem is solved by converting the H, problem into the simultaneous stabilization of the closed loop
characteristic polynomial. The stability boundary of each of these polynomials can be computed explicitly for
fixed x; by solving linear equations. The union of the resulting stability regions yields the set of all set of all X;
and X, The entire three dimensional set is obtained by sweeping X; over the stabilizing range. They
demonstrate that the shape of the stabilizing set in the controller parameter space is quite different and much
more complicated compared to that of the PID controllers.
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INTRODUCTION
It is well known that the majority of controllers in that it is possible to obtain an H” optimal design
industry are of the proportional-integral-derivative using a brute force optimal search procedure for PID
(PID) type and lead/lag controllers of the controllers (Ching-Ming Lee, 2004). The stability
form C o XSt .Over the last 40 years control region over which the search is conducted is
s+ x, composed of the intersection of convex polygons.
theory literature has been dominated by modern  This leads to a region bounded by linear constraints.
optimal control theory and its offshoots. These This advantage is not available in the case of first
powerful techniques are based on the Youla—Jabr— order controllers. Nevertheless, we show here that by
Bongiorno—Kucera (YJBK) characterization of all solving sets of linear equations it is possible to obtain
stabilizing controllers for a given plant. However, the ~ the complete set of stabilizing, first-order controllers
resulting controllers tend to be of unnecessarily high ~ which simultaneously satisfies an H” constraint.
order. In fact, there are only a few results that apply
to low order/fixed structure controllers. In attempting ~ Design Preliminaries
to combine the power of optimal control with low  Consider the Single Input Single Output (SISO)
order/ fixed structure controllers one might try to  feedback system with the first order controller. Here
obtain an analog to the YJBK parameterization. ~ we are not going for any dead time compensator for
Recently, this problem has been solved for PID the time delayed system. The objective is to find the
controllers. With the stability set parameterized, it is ~ admissible set of X, X, and X; by using the
natural to search for a particular controller within this ~ polynomial stabilization method and to find the
set based on performance and/or robustness criteria. stabilizing regions.
Many such criteria can be formulated in terms of the
frequency weighted H” norm of a closed-loop
transfer function. Using the results, it has been shown
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Figure 1. Feedback control system with
multiplicative uncertainty

OBJECTIVES

Phase 1 — Design of Various Conventional Controller
for the integral process with dead time

Phase 2 — (i) Stability and Performance analysis of
the unstable systems with Mu synthesis

(i1) Design of H-Infinity Controller design.

(iii) H-Infinity PID Controller Design for the robust
performance (Masami Saeki.2005 & Guillermo J.
Silva. 2004)

Phase 3 — To implement the Lower Order Controller
to the Real Time Inverted Pendulum

MATERIALS AND METHODS
Design Approach
The controller design part for the unstable process
has been divided into two categories.

1. First order controller for the Integrating
Process with Dead Time.
Design of Controller for the Real Time
Inverted Pendulum
As a preliminary work for the controller design of
real time Rotary Inverted Pendulum (RIP), we have
considered the model of the RIP. The LQR controller
has been calculated and implemented in LabVIEW.
The obtained responses were quite satisfactory for the
RIP model. In order to design and implement the
Lower order robust controller /Robust PID controller
for the Inverted Pendulum we need to extract the
encoder output of the arm and pendulum to the
external board. The encoder output will give the
exact angle of the pendulum. So that we can able to
calculate the error “e” by finding the difference
between the 180 and the actual angle of the
pendulum, which can be used as the feedback for the
controller. Since this process is under going, the real
time validation of Robust PID controller will be
planned in the near future (Weidong Zhang, 2002).

2.

Need for Robust First Order Controller

In this paper, the design of lower order robust
controller based on an H” performance index using
polynomial stabilization has been considered. In H”
controller design, the major disadvantage of the
existing methods is that they lead to high-order
controllers. This is the gap between theory and
practice. Therefore the requirement is to design a low
order controller with similar performance to the H”
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optimal controllers, which can find sufficiently wide
use in engineering practice. We first design the H”
optimal controller using Glover and Doyle’s results,
and obtain the corresponding performance index.
Second, the desired low order controller with several
parameters is chosen, e.g., a first-order controller, or
a PID controller. Finally, we use the real-code genetic
algorithm to find the optimal controller parameters
that preserve the performance index §. These lower
order controllers finds more practical applications in
the area of aircraft and space vehicle stabilizations
and overcomes the disadvantages of the H”
controller.

Discussion on H-Infinity based Lower Order
Controller

The low order controller has many advantages such
as simple hardware implementation and high
reliability and is very important for the successful
integration of controllers with smart structures.
Designing a controller with robustness to different
uncertainties in smart structure always leads to a high
order controller. Alternate method of controller
reduction, is to find a low order controller by
reducing the full order controller. The effect of the
controller reduction on the system performance is
taken into account by selecting a maximum allowable
controller reduction error for preserving the
performance. The full order controller can be
synthesized to provide optimal performance or
maximum allowable controller reduction error.
Linear matrix inequalities (LMIs) are utilized in those
methods to design the low order controllers. The
variations  of  structural  parameters, natural
frequencies and damping ratios are considered in the
controller design as parametric uncertainties.

Design Problem
Consider an arbitrary LTI plant (after PADE appx)
and a first order controller given by

N(s) (=0.0506s5)+0.0163

. P(s)=
Plant: )= 55 57+ 03885
Controller: C(s)=28"%
s+ x,

We naturally assume that 'the plant P(s) _is
stabilizable, by a controller of some order, not
necessarily first order. Let us use the standard even-
odd decomposition of polynomials:

N (s) = Ne(s2)+ SND(SZ)— -——= > (1)
N(s)=(-0.0506s5)+0.0163

D(s) = De(s2)+ sDo(sz)— -——- > (2)
D(s)=s>+0.388s
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S(jo)=[-w* N, (~0’) x, + N,(-0%)x,
+D,(-0) x, -0’ D,(-0")]
+jo [N (@) -x,+ N,(-0*) x,
+D,(~@°) x,+ D, (—0")]

S(jo)=[-@*(0.0506)-x, + (~0.0163) - x,
+(~0%) x, — @°(~0.388)]
+ o -10.0163(—0*)-x, + (~0.0506) - @ - x,
+0.388(-@) x,+ (-0 (~@?)]

The characteristic polynomial of the closed loop
system is

8(s)=D(s)(s+ x5)+ N(s)(x;s+ x,)

=[D,(s7)+5D,(s))(s +2,) +[N,(s") + 5N, ())(x;s +2x,)

8(5) =[5 D)+, D)+, N () 4357 N () H5[D,(5) 42 - Dy () +2, - Ny(57)
+x,- NB(A3 )]

8(s)=5°0.388+5" - x, +0.0163- x, +5(~0.0506)x, +5[s” +0.388x;, +(~0.0506)x, +0.0163x;]

3(s) =" +5" (0388+x,~0.0506- ) +5(0.0163- 5, ~0.0506. x, +0.388-x,)+ 00163,
With s=jo

The complex root boundary is given by

d(jow)=0, we (0,+0)— - - — — — - (3)
And the real root boundary is given by
5(0) =0, 6, =0--=--=--=--- - (4)

Where 5n .1 denotes the leading co-efficient of
o(s).

Thus, the complex root boundary is given by:
~&*N,(~@")x, + N (~@*)x, + D, (=" )x, = @°D, ()] = 0~ === = (5)
~* - (=0.0506) - x, +(=0.0163) - x, + (") - x, ~[(#*)-0.388] = 0

O IN(-0)-5 +N,(-6)-3,+ D7), D) =0~

®[(00163)- x, +(~0.0506)- x, +(0.388)- x, +(~c)] =0

Note that at ®=0 equation 6 is trivially satisfied and
equation 5 becomes

N,(0)-x,+D,(0) X, =0-—————————————

0.0163-x,+(0)-x;=0

Which coincides with the condition
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5(0)=0
The condition O .1 =0 translates to
d,+x,'n,=0--————————————— - (8)

Where d, n, denotes the co-efficient of s” in D(s)
and N(s) respectively.

For >0 we have

~&'N, (=% + N, (~&")x, + D,(~a )%, &' D, ()| = 0~ ——(9)
— -(-0.0506)- x, +(<0.0163) x, +(~7) - X, —[(%)-0.388] =0

AN(03) 3 +N,(-6) x,+ D) x, # D5 )| =0-———(10)

@ [(00163)-x; +(-0.0506)- x, +(0.388)- x, +(—c)] =0

Re-write the above in matrix form:

{ Jl2]

@’ N, (-0°)
N (-o%)

- N, (-0?)
N,(~0%)

Xy

X3

®?-(-0.0506) -0.0163][ x,

0.0163 —-0.0506 || x,

_| Do) x, -0’D,(-0o™H] Sl
-D,(-0’) x, -D.(-®%)

[0 x, - ©%(0.388)

| -0.388-x, - (-0?)

Now consider the case when | A(a))|;t o for all

w>0.
The case when [4(w)|=0 will be discussed later.

Then
[4(0)]|= @’N,(-0?)+ N,/ (-0?)> 0

[4(0)]|= @?(-0.0506)> + (0.0163)°

Yo>0

Therefore, for every X,the above equation in matrix

form has a unique solution X, and Xx,at each ®>0

given by:

wl__ 1 [N (-e’) N (-0 |
x| |A(@)] |-N,(-0?) o’N, (-0
[D”(_‘”Z)M_QZDG(_WZ)}___—— > (12)
D,(—-0*)x,- D, (-»?)

In other words



Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS) 2 (1): 117-122 (ISSN: 2141-7016)

x‘(m):m([w,(f)pe ()~ N(0)D,(~0) 5, ~ &N, (~0)D, ()~ N(~0)D, () Table-1. Set of X;, X, and X3 values which stabilizes the &
_ (0.0506(?) —0.0063244) - x, +0.0359328(c’) S.No Xi X, X3
w(@)= 0.00256036(c) +0.00026569 1 73 T 2
2. 7.5 29 2.4
x(0)= m([ﬂv‘«wl)p‘«wﬂ - @'N,(-0")D,(-0") ], + @'N (~0")D,(-0") - &N (-0")D,(-0")) 3. 7.5 27 2.4
4. 7.5 25 2.4

~ (0.0359328 - " +0.0063244 - @*)x; = (0.0506 - »*)

w(o)= (000256036 ) +0.00026569 5. 7.5 22 2.4
6. 7.5 20 2.4
For a fixed value of X, let @ run from 0 to c. The above 7. 7.5 19 2.4
equations trace out a curve in the X, - X, plane 8. 7.5 17 2.4
corresponding to the complex root boundary. These 9. 7.5 16 2.4
curves along with the straight lines equation (7) and 10. 75 15 2.4
equation (8) partition the parameter space into a set of 1. 75 10 24

open root distribution invariant regions.
If the possibility |A(a))|=O is considered for

some @ # (. The assumption of stabilisability of the Table.2. Checked set of X, X, and X;

plant rules out this possibility. Xi X> X3
7.5 11 2.4
Let
_ 2 2 2 20 2y _ o
[4(@)]= 0N (@) + N (-0%) =0, = 13) Table.3. Routh Table for &
Routh Hurwitz 1% column is
For some o#0. Since
NZ(w®),N2(®?) > 0, equation (13) holds if and s3 1
only if §2 2.40850
0.4224053249
N (0?)= N2 (-0?)=0.— ———— — S (14) g
. . 0 0.1793
From equation (11) it follows that S

D,(~0’)x,-@’D,(-0*) =0,
-D,(~0’)x; - D, (~0’) =0,

therefore

o’D, (-0’ )+ D! (~0’)=0--- - > (15)
since D,(0?),D, (-0?) 20,

Equation (15) holds good if and only if
D, (0)=D,(-0°) =0~~~ - (16)

From equation (14) and (16), it follows that equation
(13) has a solution for w=0 if and only if D(s) and
N(s) have a common factor §2 + @Z. Therefore, the

case |A{e) [=0 for some ® need not be considered.

RESULTS AND DISCUSSIONS
After the peer analysis and mathematical process, the

stabilizing layers of X;, X, and X; has been plotted . o N
and the stability test through Routh Hurwitz criteria Figure 2. Admissible set of X, X, and X;
was also carried out for the particular values. values for First order Controller
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FUTURE WORKS
1) To retune the controller for the RIP-MIMO
transfer function.
2) To validate the real time response with the
various controller tuning.

CONCLUSIONS

The results of first order robust controller for the time
delayed system has been reported in this paper.
Layers of stabilizing values of X; and X, for the
various fixed values of X3 has been plotted as shown
in Fig.1 and the stability of the controller with respect
to plant were also analyzed as showed in Fig.5 and
Fig.6. As a part of real time validation using Rotary
Inverted Pendulum (RIP), the LQR controller has
been designed and simulated for the model of the
RIP, also it results in the satisfactory simulation
results as shown in the Fig.7. and Fig.8.
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